[单选题]
设正整数a、b、c,满足a<b<c,且ab+ac+bc=abc,则c的值是:
A . 4
B . 5
C . 6
D . 9
参考答案: C
参考解析:
方法一:
①根据倍数关系算出答案:
原式=ab+(a+b)×c=abc,(a+b)×c为c的倍数,结果abc也为c的倍数,则ab也必为c的倍数。当a=2,b=3时,c=6,符合题意。
方法二:
①整理原式:
ab+ac+bc=abc左右两边同时除以abc可得:。
②代入选项:
A选项代入可得,要满足a<b<4且a,b为正整数的情况不存在,排除。
B选项代入可得,此时仍不满足要求,排除。
C选项代入可得,满足a<b<6且a,b为正整数的情况存在,为a=2,b=3。
故本题选C。
【2017-江苏C-066】
视频解析: